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Abstract—Silicon microspheres 800 nm to 10 m have been 
formed using an excimer laser. The method described in this 
paper shows that microspheres can be formed with high yield 
and free of contamination. Silicon microspheres enable new 
applications where silica microspheres fall short. Due to their 
semiconducting properties, new photonic devices can be 
developed for nano-electro-optical applications.  

Keywords-microsphere; MDR; microcavity; resonator; excimer; 
silicon photonics; WGM 

I.  INTRODUCTION 
 The need for low-cost photonic devices has stimulated a 
significant amount of research in silicon photonics. Although 
silicon photonics is less well-developed as compared to III–V 
technologies, it has the potential to make a huge impact on the 
optical communications industry. Silicon is transparent in the 
standard ITU optical communication bands, which makes 
silicon the material of choice for passive and active 
optoelectronic devices. Recently, microspheres are gaining an 
important place in th e optical microcavity resonator 
community due to their high quality factor morphology-
dependent resonances (MDRs). Silicon microspheres with 
high quality factor morphology dependent resonances are used 
for resonant detection and filtering of light in the near infrared. 
The experimentally measured quality factors are limited by the 
sensitivity of the experimental setup, however, the 
microsphere quality factor i s several orders o f magnitude  
higher than current microring resonators. These optical 
resonances provide the necessary narrow linewidths that are 
needed for high resolution micro-photonic applications. 
Potential applications that silica microspheres have been 
identified for include microlasers [1], channel dropping filters 
[2], [3], optical switching [4], ultrafine sensing [5], 
displacement measurement [6], rotation detection [7], high-
resolution spectroscopy [8] and raman lasers [9]. On the other 
hand, where as silica is know n to be an insulator, silicon can 
be doped to b e electrically active. Therefore, silicon 
microspheres would extend the applications list to  include 
solar cells, light emitting diodes, or other semiconducting 
devices. A reproducible process to quickly fabricate uniform 
microsphere particles with a narrow distribution of diameters 
and high yield is presented in this paper. Currently, the typical 
methods used to form microspheres include forcing molten 
silicon out of a nozzle [10] or melting the end of a fiber [1]. 

 

Figure 1.  Diagram of the experimental setup. 

II. EXPERIMENT 
The silicon microspheres were created by using a 250-watt, 

308 nm XeCl excimer laser (Lambda Physik L4308, 1 J oule 
per pulse max). The output beam profile of the excimer laser is 
3cm by 1cm. The beam is reflected downward with a 45 degree 
mirror and focused into either a 3cm long line profile using a 
cylindrical lens or a point profile using a s pherical lens with 
both lenses having a 20cm long focal length as shown in Fig.1. 
The focused beam impinges onto a silico n wafer at a rate o f 
100 pulses per second with the wafer resting upon an 
automated X-Y translation stage (Aerotech ATS10015-M). The 
high intensity of the impinging beam ablates the silicon off the 
exposed wafer surface as micro-particulates. The micro-
particulates may or may not be molten as they are ejected from 
the surface of the silicon wafer. A container is used to surround 
the ablated area to prevent the micro-particulates from ejecting 
off the stage. The translation st age is requ ired to ensure the 
focal point of the beam  is always focused on the surface of the 
wafer. A high speed 40 0 frames per second i nfrared camera 
(FLIR SC4000) was used to determine the velocity of the 
micro-particulates ablated from the wafer surface.  

III. RESULTS 
Microspheres are formed when a molten droplet of material 

solidifies as it is suspended in air. T he physics due to surface 
tension is th e basis for the formation the near perfectly 
spherical particles with re-solidification times o f less th an a 
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Figure 2.    Scanning electron microscope image of a silicon microsphere 
created by using  (a) a cylindrical lens (top) and (b) a similar sized particle 

created using a spherical lens (bottom). 

 

nanosecond [11]. Using a cylindrical lens, Fig. 2 (a) shows a 
scanning electron microscopy image of a 1.5 micron diameter 
silicon sphere created using 500 mJ for the output energy. This 
translates to energy dens ity of ap proximately 16 J/ cm2 for a 
focused beam width of 0.1 mm. For a spherical lens, an energy 
density upwards of 50 J/cm2 can be achieved for a 1 m m by 1 
mm focused spot size. Interestingly nearly all particulates 
generated with a spheri cal lens pr oduced irregularly shaped 
particles as shown i n Fig. 2 (b). From these results, it can be 
deduced that the particulates are partially molten when they are 
ejected from the surface and th at smooth microspheres only 
form when the ablated particulates re-enter the bea m at least 
one additional time, ensuring the particulate is in a molten state 
in the form of a liquefied droplet. The longer line beam profile 
produced by the cylindrical lens facilitates a greater chance for 
the particulates to re-enter the beam multiple times and 
therefore produces a much higher yield of microspheres. In 
comparison, the spherical lens produces a v ery narrow beam 
and only particulates which have been ejected exactly normal 
to the plane of the  surface will liquefied. From  these 

observations, it can be c oncluded that a cylindrical lens 
produces the best results for the fabrication of silicon 
microspheres. 

For single crystal si licon, it is  well known that the optical 
phonon dispersion curve co ntains one R aman active zone 
center phonon at 523 cm-1. For amorphous silicon, the Raman 
spectrum will be shifted from the single crystal cen ter 
frequency as well as broade ned due to the plethora of zone 
center phonons. Raman Spectroscopy was performed on the 
silicon microsphere to determine its mi crostructure. The peak 
at  523 cm-1 as shown in Fig. 3, indicates that the microspheres 
are single crystalline. 

The maximum production rate was m easured for this 
microsphere formation technique. A l aser energy of 700 mJ 
and a repetition rate of 300 pulses per second and a translation 
stage rate of 5 cm/s was used to measure the maximum amount 
of particles achievable with this method. The particles were 
collected and wei ghed on a Mettler balance scale where it 
could then be calculated that the maximum particle production 
rate was app roximately 2000 mg/hr. For laser systems that 
have a higher repetition rat e limit beyond 300 pulses per 
second, the rate of production can be i ncreased further. Fig. 3 
(a) shows the microsphere yield results of a laser energy set to 
500 mJ at 100 Hz. When compared to the yield results of a 
laser energy set to 700 mJ at 100 Hz as shown in Fig. 3 (b), it 
can be immediately noticed th at the lower e nergy beam 
produces smaller microspheres on the order of 1 to 2 m while 
an increase in laser energy show s larger microspheres up to 10 
m in diameter. This can b e attributed to the fact that larger 
particulates have been abla ted from the surface and rende red 
molten through multiple passes through the beam.  

The velocity of the particulates ejected from  the silicon 
wafer needs to be known to determine the minimum pulse rate 
of the excimer laser. The minimum pulse rate would ensure 
that the ejected particulate would pass through the beam at least 
one time. The ejection velocity of particulates was determined 
with the use a high s peed infrared camera. A grid of known 
space was placed in the ba ckground and with the known  
 

 
Figure 3.    Raman spectroscopy measurements on silicon microspheres. 

The vertical and horizontal axis represents the ‘intensity’ (a.u.) and ‘Raman 
shift’ (cm-1), respectively. 

(a) 

(b) 



number of 4 00 frames per second , the velocity of the 
particulates was measured at approximately 3.8 m/s. Given that 
the laser pulse width is 20 ns, the beam would be 6 m in length. 
Assuming that air resistan ce is n egligible, and for particles 
ejected through the 3 cm  beam lengthwise, the particle would 
pass through two pulses of the beam at a repetition rate of 300 
Hz. In o rder to ensure that th e majority of particles are 
collected, a thin rectangular container was used to surround the 
beam, this als o increase the  chances of the p articles to pass 
through multiple beams as it bounces of the container walls. 

IV. CONCLUSION 
      A novel high yield method of forming silicon microspheres 
has been shown using an excimer laser. It has been concl uded 
that the formation mechanism is due to the ablated particulates 
remelting as they pass through the laser beam and the surface  

 

 
 

Figure 4.    Microspheres formed using an excimer laser energy of (a) 500 mJ 
and (b) 700 mJ. 

tension enforces the spherical shape during resolidification. 
The result is nearly perfe ctly spherical microspheres with 
diameters range from 800 nm to 10 m. Raman spectroscopy 
indicates that these microspheres are single crysta lline. Future 
work includes developing a sort ing process using optical 
radiation pressure and optical characterization to determine 
their suitability for optical resonator applications.  
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